A Modified Hss Iteration Method for Solving the Complex Linear Matrix Equation

نویسندگان

  • Rong Zhou
  • Xiang Wang
  • Peng Zhou
  • P. ZHOU
چکیده

In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation AXB = C has been presented. As the theoretical analysis shows, the MHSS iteration method will converge under certain conditions. Each iteration in this method requires the solution of four linear matrix equations with real symmetric positive definite coefficient matrices, although the original coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter of the new iteration method is proposed. Numerical results show that MHSS iteration method is efficient and robust. Mathematics subject classification: 65F10, 65F50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Newton-hss Methods for Systems of Nonlinear Equations with Positive-definite Jacobian Matrices

The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobi...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

Accelerated normal and skew - Hermitian splitting

For solving large sparse non-Hermitian positive definite linear equations, Bai et al. proposed the Hermitian and skew-Hermitian splitting methods (HSS). They recently generalized this technique to the normal and skew-Hermitian splitting methods (NSS). In this paper, we present an accelerated normal and skew-Hermitian splitting methods (ANSS) which involve two parameters for the NSS iteration. W...

متن کامل

On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

We study the numerical behavior of stationary one-step or two-step matrix splitting iteration methods for solving large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with the matrix splittings may considerably influence the accuracy of the approximate solutions computed in finite precision arithmetic. For a general stationary matrix splitt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016